CYV15G0104TRB
Independent Clock HOTLink II™ Serializer and
Reclocking Deserializer
transfer of data over a variety of high-speed serial links
including SMPTE 292M and SMPTE 259M video applications.
Features
®
• Second-generation HOTLink technology
• Compliant to SMPTE 292M and SMPTE 259M video
standards
• Single channel video serializer plus single channel
video reclocking deserializer
It supports signaling rates in the range of 195 to 1500 Mbps
per serial link. The transmit and receive channels are
independent and can operate simultaneously at different
rates. The transmit channel accepts 10-bit parallel characters
in an Input Register and converts them to serial data. The
receive channel accepts serial data and converts it to 10-bit
parallel characters and presents these characters to an Output
Register. The received serial data can also be reclocked and
retransmitted through the reclocker serial outputs. Figure 1
illustrates typical connections between independent video co-
processors and corresponding CYV15G0104TRB chips.
— 195- to 1500-Mbps serial data signaling rate
— Simultaneous operation at different signaling rates
• Supports reception of either 1.485 or 1.485/1.001 Gbps
data rate with the same training clock
• Internal phase-locked loops (PLLs) with no external
PLL components
• Supports half-rate and full-rate clocking
• Selectable differential PECL-compatible serial inputs
— Internal DC-restoration
The CYV15G0104TRB satisfies the SMPTE 259M and
SMPTE 292M compliance as per SMPTE EG34-1999 Patho-
logical Test Requirements.
As
a
second-generation
HOTLink
device,
the
CYV15G0104TRB extends the HOTLink family with enhanced
levels of integration and faster data rates, while maintaining
serial-link compatibility (data and BIST) with other HOTLink
devices. The transmit (TX) channel of the CYV15G0104TRB
HOTLink II device accepts scrambled 10-bit transmission
characters. These characters are serialized and output from
dual Positive ECL (PECL) compatible differential trans-
mission-line drivers at a bit-rate of either 10- or 20-times the
input reference clock for that channel.
• Redundant differential PECL-compatible serial outputs
— No external bias resistors required
— Internal source termination
— Signaling-rate controlled edge-rates
• Synchronous LVTTL parallel interface
• JTAG boundary scan
• Built-In Self-Test (BIST) for at-speed link testing
• Link Quality Indicator
The receive (RX) channel of the CYV15G0104TRB HOTLink
II device accepts a serial bit-stream from one of two selectable
PECL-compatible differential line receivers, and using a
completely integrated Clock and Data Recovery PLL, recovers
the timing information necessary for data reconstruction. The
recovered bit-stream is reclocked and retransmitted through
the reclocker serial outputs. Also, the recovered serial data is
deserialized and presented to the destination host system.
—Analog signal detect
—Digital signal detect
• Low-power 1.8W @ 3.3V typical
• Single 3.3V supply
• Thermally enhanced BGA
• Pb-Free package option available
• 0.25µ BiCMOS technology
The transmit and receive channels contain an independent
BIST pattern generator and checker, respectively. This BIST
hardware allows at-speed testing of the high-speed serial data
paths in each transmit and receive section, and across the
interconnecting links.
Functional Description
The CYV15G0104TRB Independent Clock HOTLink II™
Serializer and Reclocking Deserializer is a point-to-point or
point-to-multipoint communications building block enabling
Reclocked
Output
10
10
Independent
Channel
Independent
Channel
CYV15G0104TRB
Serial
Links
CYV15G0104TRB
Device
Device
10
10
Reclocked
Output
Figure 1. HOTLink II™ System Connections
Cypress Semiconductor Corporation
Document #: 38-02100 Rev. *B
•
3901 North First Street
•
San Jose, CA 95134
•
408-943-2600
Revised July 8, 2005
CYV15G0104TRB
Reclocking Deserializer Path Block Diagram
RESET
TRST
JTAG
Boundary
Scan
TRGRATEA
TMS
TCLK
TDI
x2
TRGCLKA
Controller
TDO
SDASEL[2..1]A[1:0]
LDTDEN
INSELA
LFIA
Receive
Signal
Monitor
10
RXDA[9:0]
BISTSTA
10
10
INA1+
INA1–
Clock &
Data
Recovery
PLL
INA2+
INA2–
RXCLKA+
RXCLKA–
÷2
ULCA
SPDSELA
RXBISTA[1:0]
RXRATEA
RXPLLPDA
Recovered Serial Data
Recovered Character Clock
ROE[2..1]A
ROUTA1+
ROUTA1–
Reclocker
Output PLL
Clock Multiplier
ROE[2..1]A
ROUTA2+
ROUTA2–
RECLKOA
REPDOA
Character-Rate Clock
Bit-Rate Clock
Serializer Path Block Diagram
Bit-Rate Clock
= Internal Signal
REFCLKB+
REFCLKB–
TXRATEB
Transmit PLL
Clock Multiplier
TOE[2..1]B
SPDSELB
TXCLKOB
Character-Rate Clock
PABRSTB
TXERRB
TXCLKB
TOE[2..1]B
TXBISTB
0
1
TXCKSELB
TOUTB1+
TOUTB1–
10
10
10
TXDB[9:0]
10
TOUTB2+
TOUTB2–
Device Configuration and Control Block Diagram
= Internal Signal
RXRATEA
RXPLLPDA
TRGRATEA
TXRATEB
TXCKSELB
PABRSTB
SDASEL[2..1]A[1:0]
TOE[2..1]B
ROE[2..1]A
RXBISTA[1:0]
TXBISTB
WREN
Device Configuration
ADDR[2:0]
and Control Interface
DATA[6:0]
Document #: 38-02100 Rev. *B
Page 3 of 27
CYV15G0104TRB
Pin Configuration (Top View)[1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A
B
C
D
E
F
TOUT
B1–
TOUT
B2–
IN
A1–
ROUT
A1–
IN
A2–
ROUT
A2–
NC
NC
NC
NC
V
NC
GND GND
GND
V
V
NC
V
NC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
TOUT
B1+
TOUT
B2+
IN
A1+
ROUT
A1+
IN
A2+
ROUT
A2+
V
NC
V
NC
V
V
V
V
GND
GND
GND
NC
GND
GND
V
V
V
NC
NC
NC
NC
CC
CC
CC
CC
CC
CC
TDI
TMS
DATA
[6]
DATA
[4]
DATA
[2]
DATA
[0]
SPD
SELB
LDTD TRST
EN
TDO
V
V
V
V
V
NC
NC
NC
NC
GND
CC
TCLK RESET
INSELA
ULCA
DATA
[5]
DATA
[3]
DATA
[1]
SCAN TMEN3
EN2
GND GND GND
NC
NC
V
CC
CC
V
V
V
V
V
V
V
CC
CC
CC
CC
CC
CC
NC
NC
NC
V
NC
NC
NC
NC
NC
CC
CC
G
H
J
WREN
SPD
SELA
GND
GND GND
NC
GND GND GND GND
GND GND GND GND
GND GND GND GND
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
K
L
NC
NC
NC
NC
NC
NC
GND GND
NC
NC
GND
NC
GND
GND
M
N
P
R
T
GND GND GND GND
GND GND GND GND
GND GND GND GND
NC
NC
NC
NC
NC
NC
NC
NC
V
V
V
V
V
V
V
V
V
CC
CC
CC
CC
CC
CC
V
V
V
V
CC
CC
CC
CC
CC
CC
CC
U
V
W
Y
TX
DB[0]
TX
DB[1]
TX
DB[2]
TX
DB[9]
ADDR
[0]
REF
CLKB–
RX
DA[4]
BIST
STA
RX
DA[0]
V
V
V
V
NC
NC
NC
NC
NC
NC
NC
NC
GND GND
GND GND GND
V
V
V
V
V
V
V
V
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
TX
DB[3]
TX
DB[4]
TX
DB[8]
REF
CLKB+ CLKOA
RE
RX
DA[9]
RX
DA[5]
RX
DA[2]
RX
DA[1]
NC
GND
GND
GND
NC
GND
GND GND
TX
DB[5]
TX
DB[7]
ADDR ADDR
RX
CLKA+
REPDO
A
LFIA
TRG
CLKA+ DA[6]
RX
RX
DA[3]
NC
NC
NC
NC
GND GND
GND GND
[2]
[1]
TX
TX
TX
CLKOB
RX
CLKA–
TX
TRG
RX
RX
DA[7]
NC
GND
DB[6] CLKB
ERRB CLKA– DA[8]
Note:
1. NC = Do not connect.
Document #: 38-02100 Rev. *B
Page 4 of 27
CYV15G0104TRB
Pin Configuration (Bottom View)[1]
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
ROUT
A2–
IN
A2–
ROUT
A1–
IN
A1–
TOUT
B2–
TOUT
B1–
NC
V
NC
V
V
GND
GND GND
NC
V
NC
NC
NC
NC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
ROUT
A2+
IN
A2+
ROUT
A1+
IN
A1+
TOUT
B2+
TOUT
B1+
NC
NC
NC
NC
V
V
V
GND
GND
NC
GND
GND
GND
V
V
V
V
NC
V
NC
V
CC
CC
CC
CC
CC
CC
TDO
TRST LDTD
EN
SPD
SELB
DATA
[0]
DATA
[2]
DATA
[4]
DATA
[6]
TMS
TDI
GND
NC
NC
NC
NC
V
V
V
V
V
CC
TMEN3 SCAN
EN2
DATA
[1]
DATA
[3]
DATA
[5]
ULCA
INSELA
RESET TCLK
V
V
NC
NC
GND GND GND
CC
CC
V
V
V
V
V
V
CC
CC
CC
CC
CC
CC
CC
NC
NC
NC
NC
NC
V
NC
NC
NC
CC
G
H
J
SPD
SELA
WREN
NC
GND GND
GND
GND GND GND GND
GND GND GND GND
GND GND GND GND
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
K
L
GND GND
NC
NC
NC
NC
NC
NC
GND
GND
GND
NC
NC
NC
M
N
P
R
T
GND GND GND GND
GND GND GND GND
GND GND GND GND
NC
NC
NC
NC
NC
NC
NC
NC
V
V
V
V
V
V
V
V
V
CC
CC
CC
CC
CC
CC
CC
CC
CC
V
V
V
V
CC
CC
CC
CC
U
V
W
Y
RX
DA[0]
BIST
STA
RX
DA[4]
REF
CLKB–
ADDR
[0]
TX
DB[9]
TX
DB[2]
TX
DB[1]
TX
DB[0]
V
V
V
V
V
V
V
V
GND GND GND
GND GND
NC
NC
NC
NC
NC
NC
NC
NC
V
V
V
V
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
RX
DA[1]
RX
DA[2]
RX
DA[5]
RX
DA[9]
RE
REF
TX
DB[8]
TX
DB[4]
TX
DB[3]
GND GND
GND
NC
GND
GND
GND
NC
CLKOA CLKB+
RX
DA[3]
RX
TRG
LFIA
REPDO
A
RX
CLKA+
ADDR ADDR
[1]
TX
DB[7]
TX
DB[5]
GND GND
GND GND
NC
NC
NC
NC
DA[6] CLKA+
[2]
RX
DA[7]
RX
TRG
TX
RX
CLKA–
TX
CLKOB
TX
TX
GND
NC
DA[8] CLKA– ERRB
CLKB DB[6]
Document #: 38-02100 Rev. *B
Page 5 of 27
CYV15G0104TRB
Pin Definitions
CYV15G0104TRB HOTLink II Serializer and Reclocking Deserializer
Name
I/O Characteristics Signal Description
Transmit Path Data and Status Signals
TXDB[9:0]
TXERRB
LVTTL Input,
synchronous,
sampled by
TXCLKB↑ or
Transmit Data Inputs. TXDB[9:0] data inputs are captured on the rising edge of the
transmit interface clock. The transmit interface clock is selected by the TXCKSELB latch
via the device configuration interface.
[2]
REFCLKB↑
LVTTL Output,
Transmit Path Error. TXERRB is asserted HIGH to indicate detection of a transmit
Phase-Align Buffer underflow or overflow. If an underflow or overflow condition is
detected, TXERRB, is asserted HIGH and remains asserted until the transmit Phase-Align
Buffer is re-centered with the PABRSTB latch via the device configuration interface. When
TXBISTB = 0, the BIST progress is presented on the TXERRB output. The TXERRB
signal pulses HIGH for one transmit-character clock period to indicate a pass through the
synchronous to
[3]
REFCLKB↑
,
asynchronous to
transmit channel
enable / disable,
asynchronous to loss BIST sequence once every 511 character times.
or return of
TXERRB is also asserted HIGH, when any of the following conditions is true:
REFCLKB±
• The TXPLL is powered down. This occurs when TOE2B and TOE1B are both disabled
by setting TOE2B = 0 and TOE1B = 0.
• The absence of the REFCLKB± signal.
Transmit Path Clock Signals
REFCLKB±
Differential LVPECL Reference Clock. REFCLKB± clock inputs are used as the timing reference for the
or single-ended
transmit PLL. This input clock may also be selected to clock the transmit parallel interface.
When driven by a single-ended LVCMOS or LVTTL clock source, connect the clock source
to either the true or complement REFCLKB input, and leave the alternate REFCLKB input
open (floating). When driven by an LVPECL clock source, the clock must be a differential
clock, using both inputs.
LVTTL input clock
TXCLKB
LVTTL Clock Input,
internal pull-down
Transmit Path Input Clock. When configuration latch TXCKSELB = 0, the associated
TXCLKB input is selected as the character-rate input clock for the TXDB[9:0] input. In this
mode, the TXCLKB input must be frequency-coherent to its TXCLKOB output clock, but
may be offset in phase by any amount. Once initialized, TXCLKB is allowed to drift in
phase by as much as ±180 degrees. If the input phase of TXCLKB drifts beyond the
handling capacity of the Phase Align Buffer, TXERRB is asserted to indicate the loss of
data, and remains asserted until the Phase Align Buffer is initialized. The phase of
TXCLKB relative to REFCLKB± is initialized when the configuration latch PABRSTB is
written as 0. When TXERRB is deasserted, the Phase Align Buffer is initialized and input
characters are correctly captured.
TXCLKOB
LVTTL Output
Transmit Clock Output. TXCLKOB output clock is synthesized by the transmit PLL and
operates synchronous to the internal transmit character clock. TXCLKOB operates at
either the same frequency as REFCLKB± (TXRATEB = 0), or at twice the frequency of
REFCLKB± (TXRATEB = 1). The transmit clock outputs have no fixed phase relationship
to REFCLKB±.
Receive Path Data and Status Signals
RXDA[9:0]
LVTTL Output,
synchronous to the
RXCLKA ± output
Parallel Data Output. RXDA[9:0] parallel data outputs change relative to the receive
interface clock. If RXCLKA± is a full-rate clock, the RXCLKA± clock outputs are comple-
mentary clocks operating at the character rate. The RXDA[9:0] outputs for the associated
receive channels follow rising edge of RXCLKA+ or falling edge of RXCLKA–. If RXCLKA±
is a half-rate clock, the RXCLKA± clock outputs are complementary clocks operating at
half the character rate. The RXDA[9:0] outputs for the associated receive channels follow
both the falling and rising edges of the associated RXCLKA± clock outputs.
When BIST is enabled on the receive channel, the BIST status is presented on the
RXDA[1:0] and BISTSTA outputs. See Table 6 for each status reported by the BIST state
machine. Also, while BIST is enabled, the RXDA[9:2] outputs should be ignored.
Notes:
2. When REFCLKB± is configured for half-rate operation, these inputs are sampled relative to both the rising and falling edges of the associated REFCLKB±.
3. When REFCLKB± is configured for half-rate operation, this output is presented relative to both the rising and falling edges of the associated REFCLKB±.
Document #: 38-02100 Rev. *B
Page 6 of 27
CYV15G0104TRB
Pin Definitions (continued)
CYV15G0104TRB HOTLink II Serializer and Reclocking Deserializer
Name
I/O Characteristics Signal Description
BISTSTA
LVTTL Output,
synchronous to the
RXCLKA ± output
BIST Status Output. When RXBISTA[1:0] = 10, BISTSTA (along with RXDA[1:0])
displays the status of the BIST reception. See Table 6 for the BIST status reported for
each combination of BISTSTA and RXDA[1:0].
When RXBISTA[1:0] ≠ 10, BISTSTA should be ignored.
REPDOA
Asynchronous to
reclocker output
channel
Reclocker Powered Down Status Output. REPDOA is asserted HIGH, when the
reclocker output logic is powered down. This occurs when ROE2A and ROE1A are both
disabled by setting ROE2A = 0 and ROE1A = 0.
enable/disable
Receive Path Clock Signals
TRGCLKA± Differential LVPECL CDR PLL Training Clock. TRGCLKA± clock inputs are used as the reference source for
or single-ended
LVTTL input clock
the frequency detector (Range Controller) of the receive PLL to reduce PLL acquisition
time.
In the presence of valid serial data, the recovered clock output of the receive CDR PLL
(RXCLKA±) has no frequency or phase relationship with TRGCLKA±.
When driven by a single-ended LVCMOS or LVTTL clock source, connect the clock source
to either the true or complement TRGCLKA input, and leave the alternate TRGCLKA input
open (floating). When driven by an LVPECL clock source, the clock must be a differential
clock, using both inputs.
RXCLKA±
RECLKOA
LVTTL Output Clock Receive Clock Output. RXCLKA± is the receive interface clock used to control timing of
the RXDA[9:0] parallel outputs. These true and complement clocks are used to control
timing of data output transfers. These clocks are output continuously at either the half-
th
th
character rate (1/20 the serial bit-rate) or character rate (1/10 the serial bit-rate) of the
data being received, as selected by RXRATEA.
LVTTL Output
Reclocker Clock Output. RECLKOA output clock is synthesized by the reclocker output
PLL and operates synchronous to the internal recovered character clock. RECLKOA
operates at either the same frequency as RXCLKA± (RXRATEA = 0), or at twice the
frequency of RXCLKA± (RXRATEA = 1).The reclocker clock outputs have no fixed phase
relationship to RXCLKA±.
Device Control Signals
RESET
LVTTL Input,
asynchronous,
internal pull-up
Asynchronous Device Reset. RESET initializes all state machines, counters, and
configuration latches in the device to a known state. RESET must be asserted LOW for a
minimum pulse width. When the reset is removed, all state machines, counters and config-
uration latches are at an initial state. See Table 4 for the initialize values of the device
configuration latches.
LDTDEN
LVTTL Input,
internal pull-up
Level Detect Transition Density Enable. When LDTDEN is HIGH, the Signal Level
Detector, Range Controller, and Transition Density Detector are all enabled to determine
if the RXPLL tracks TRGCLKA± or the selected input serial data stream. If the Signal Level
Detector, Range Controller, or Transition Density Detector are out of their respective limits
while LDTDEN is HIGH, the RXPLL locks to TRGCLKA± until such a time they become
valid. SDASEL[2..1]A[1:0] is used to configure the trip level of the Signal Level Detector.
The Transition Density Detector limit is one transition in every 60 consecutive bits. When
LDTDEN is LOW, only the Range Controller is used to determine if the RXPLL tracks
TRGCLKA± or the selected input serial data stream. it is recommended to set LDTDEN
= HIGH.
ULCA
LVTTL Input,
internal pull-up
Use Local Clock. When ULCA is LOW, the RXPLL is forced to lock to TRGCLKA± instead
of the received serial data stream. While ULCA is LOW, the link fault indicator LFIA is
LOW indicating a link fault.
When ULCA is HIGH, the RXPLL performs Clock and Data Recovery functions on the
input data streams. This function is used in applications in which a stable RXCLKA± is
needed. In cases when there is an absence of valid data transitions for a long period of
time, or the high-gain differential serial inputs (INA±) are left floating, there may be brief
frequency excursions of the RXCLKA± outputs from TRGCLKA±.
Document #: 38-02100 Rev. *B
Page 7 of 27
CYV15G0104TRB
Pin Definitions (continued)
CYV15G0104TRB HOTLink II Serializer and Reclocking Deserializer
Name
I/O Characteristics Signal Description
[4]
SPDSELA
SPDSELB
3-Level Select
Serial Rate Select. The SPDSELA and SPDSELB inputs specify the operating signaling-
rate range of the receive and transmit PLL, respectively.
static control input
LOW = 195 – 400 MBd
MID = 400 – 800 MBd
HIGH = 800 – 1500 MBd.
INSELA
LFIA
LVTTL Input,
asynchronous
Receive Input Selector. The INSELA input determines which external serial bit stream
is passed to the receiver’s Clock and Data Recovery circuit. When INSELA is HIGH, the
Primary Differential Serial Data Input, INA1±, is selected for the receive channel. When
INSELA is LOW, the Secondary Differential Serial Data Input, INA2±, is selected for the
receive channel.
LVTTL Output,
asynchronous
Link Fault Indication Output. LFIA is an output status indicator signal. LFIA is the logical
OR of six internal conditions. LFIA is asserted LOW when any of the following conditions
is true:
• Received serial data rate outside expected range
• Analog amplitude below expected levels
• Transition density lower than expected
• Receive channel disabled
• ULCA is LOW
• Absence of TRGCLKA±.
Device Configuration and Control Bus Signals
WREN
LVTTL input,
asynchronous,
Control Write Enable. The WREN input writes the values of the DATA[6:0] bus into the
latch specified by the address location on the ADDR[2:0] bus.
[5]
internal pull-up
ADDR[2:0]
LVTTL input
asynchronous,
internal pull-up
Control Addressing Bus. The ADDR[2:0] bus is the input address bus used to configure
the device. The WREN input writes the values of the DATA[6:0] bus into the latch specified
[5]
by the address location on the ADDR[2:0] bus. Table 4 lists the configuration latches
within the device, and the initialization value of the latches upon the assertion of RESET.
Table 5 shows how the latches are mapped in the device.
DATA[6:0]
LVTTL input
asynchronous,
internal pull-up
Control Data Bus. The DATA[6:0] bus is the input data bus used to configure the device.
The WREN input writes the values of the DATA[6:0] bus into the latch specified by address
[5 ]
location on the ADDR[2:0] bus. Table 4 lists the configuration latches within the device,
and the initialization value of the latches upon the assertion of RESET. Table 5 shows how
the latches are mapped in the device.
Internal Device Configuration Latches
[6]
RXRATEA
Internal Latch
Receive Clock Rate Select.
[6]
SDASEL[2..1] Internal Latch
A[1:0]
Signal Detect Amplitude Select.
[6]
[6]
[6]
[6]
[6]
[6]
[6]
[6]
TXCKSELB Internal Latch
Transmit Clock Select.
TXRATEB
Internal Latch
Transmit PLL Clock Rate Select.
Reclocker Output PLL Clock Rate Select.
Receive Channel Power Control.
Receive Bist Disabled.
TRGRATEA Internal Latch
RXPLLPDA Internal Latch
RXBISTA[1:0] Internal Latch
TXBISTB
TOE2B
Internal Latch
Internal Latch
Internal Latch
Transmit Bist Disabled.
Transmitter Differential Serial Output Driver 2 Enable.
Transmitter Differential Serial Output Driver 1 Enable.
TOE1B
Notes:
4. 3-Level Select inputs are used for static configuration. These are ternary inputs that make use of logic levels of LOW, MID, and HIGH. The LOW level is usually
implemented by direct connection to V (ground). The HIGH level is usually implemented by direct connection to V (power). The MID level is usually
SS
CC
implemented by not connecting the input (left floating), which allows it to self bias to the proper level.
5. See Device Configuration and Control Interface for detailed information on the operation of the Configuration Interface.
6. See Device Configuration and Control Interface for detailed information on the internal latches.
Document #: 38-02100 Rev. *B
Page 8 of 27
CYV15G0104TRB
Pin Definitions (continued)
CYV15G0104TRB HOTLink II Serializer and Reclocking Deserializer
Name
I/O Characteristics Signal Description
[6]
ROE2A
ROE1A
PABRSTB
Internal Latch
Internal Latch
Internal Latch
Reclocker Differential Serial Output Driver 2 Enable.
[6]
[6]
Reclocker Differential Serial Output Driver 1 Enable.
Transmit Clock Phase Alignment Buffer Reset.
Factory Test Modes
SCANEN2
LVTTL input,
internal pull-down
Factory Test 2. SCANEN2 input is for factory testing only. This input may be left as a NO
CONNECT, or GND only.
TMEN3
LVTTL input,
internal pull-down
Factory Test 3. TMEN3 input is for factory testing only. This input may be left as a NO
CONNECT, or GND only.
Analog I/O
TOUTB1±
CML Differential
Output
Transmitter Primary Differential Serial Data Output. The transmitter TOUTB1± PECL-
compatible CML outputs (+3.3V referenced) are capable of driving terminated trans-
mission lines or standard fiber-optic transmitter modules, and must be AC-coupled for
PECL-compatible connections.
TOUTB2±
ROUTA1±
ROUTA2±
CML Differential
Output
Transmitter Secondary Differential Serial Data Output. The transmitter TOUTB2± PECL-
compatible CML outputs (+3.3V referenced) are capable of driving terminated transmission lines
or standard fiber-optic transmitter modules, and must be AC-coupled for PECL-compatible
connections.
CML Differential
Output
Reclocker Primary Differential Serial Data Output. The reclocker ROUTA1± PECL-
compatible CML outputs (+3.3V referenced) are capable of driving terminated trans-
mission lines or standard fiber-optic transmitter modules, and must be AC-coupled for
PECL-compatible connections.
CML Differential
Output
Reclocker Secondary Differential Serial Data Output. The reclocker ROUTA2± PECL-
compatible CML outputs (+3.3V referenced) are capable of driving terminated transmission lines
or standard fiber-optic transmitter modules, and must be AC-coupled for PECL-compatible
connections.
INA1±
INA2±
Differential Input
Differential Input
Primary Differential Serial Data Input. The INA1± input accepts the serial data stream
for deserialization. The INA1± serial stream is passed to the receive CDR circuit to extract
the data content when INSELA = HIGH.
Secondary Differential Serial Data Input. The INA2± input accepts the serial data
stream for deserialization. The INA2± serial stream is passed to the receiver CDR circuit
to extract the data content when INSELA = LOW.
JTAG Interface
TMS
LVTTL Input,
internal pull-up
Test Mode Select. Used to control access to the JTAG Test Modes. If maintained high for
≥5 TCLK cycles, the JTAG test controller is reset.
TCLK
LVTTL Input,
internal pull-down
JTAG Test Clock.
TDO
TDI
3-State LVTTL Output Test Data Out. JTAG data output buffer. High-Z while JTAG test mode is not selected.
LVTTL Input,
Test Data In. JTAG data input port.
internal pull-up
TRST
LVTTL Input,
internal pull-up
JTAG reset signal. When asserted (LOW), this input asynchronously resets the JTAG
test access port controller.
Power
V
+3.3V Power.
CC
GND
Signal and Power Ground for all internal circuits.
CYV15G0104TRB HOTLink II Operation
CYV15G0104TRB Transmit Data Path
The CYV15G0104TRB is a highly configurable, independent
clocking device designed to support reliable transfer of large
quantities of digital video data, using high-speed serial links
from multiple sources to multiple destinations.
Input Register
The parallel input bus TXDB[9:0] can be clocked in using
TXCLKB (TXCKSELB = 0) or REFCLKB (TXCKSELB = 1).
Document #: 38-02100 Rev. *B
Page 9 of 27
CYV15G0104TRB
Phase-Align Buffer
Table 1. Operating Speed Settings
Data from the Input Register is passed to the Phase-Align
Buffer, when the TXDB[9:0] input register is clocked using
TXCLKBA (TXCKSELB = 0) or when REFCLKB is a half-rate
clock (TXCKSELB = 1 and TXRATEB = 1). When the
TXDB[9:0] input register is clocked using REFCLKB±
(TXCKSELA = 1) and REFCLKB± is a full-rate clock
(TXRATEB = 0), the associated Phase Alignment Buffer in the
transmit path is bypassed. These buffers are used to absorb
clock phase differences between the TXCLKB input clock and
the internal character clock for that channel.
REFCLKB±
Frequency
(MHz)
Signaling
SPDSELB
TXRATEB
Rate (Mbps)
LOW
1
0
1
0
1
0
reserved
19.5–40
20–40
195–400
400–800
800–1500
MID (Open)
HIGH
40–80
40–75
Once initialized, TXCLKB is allowed to drift in phase as much
as ±180 degrees. If the input phase of TXCLKB drifts beyond
the handling capacity of the Phase Align Buffer, TXERRB is
asserted to indicate the loss of data, and remains asserted
until the Phase Align Buffer is initialized. The phase of
TXCLKB relative to its internal character rate clock is initialized
when the configuration latch PABRSTB is written as 0. When
the associated TXERRB is deasserted, the Phase Align Buffer
is initialized and input characters are correctly captured.
80–150
The REFCLKB± inputs are differential inputs with each input
internally biased to 1.4V. If the REFCLKB+ input is connected
to a TTL, LVTTL, or LVCMOS clock source, the input signal is
recognized when it passes through the internally biased
reference point. When driven by a single-ended TTL, LVTTL,
or LVCMOS clock source, connect the clock source to either
the true or complement REFCLKB input, and leave the
alternate REFCLKB input open (floating).
If the phase offset, between the initialized location of the input
clock and REFCLKB, exceeds the skew handling capabilities
of the Phase-Align Buffer, an error is reported on that
channel’s TXERRB output. This output indicates an error
continuously until the Phase-Align Buffer for that channel is
reset. While the error remains active, the transmitter for that
channel outputs a continuous “1001111000” character to
indicate to the remote receiver that an error condition is
present in the link.
When both the REFCLKB+ and REFCLKB– inputs are
connected, the clock source must be a differential clock. This
can either be a differential LVPECL clock that is DC-or
AC-coupled or a differential LVTTL or LVCMOS clock.
By connecting the REFCLKB– input to an external voltage
source, it is possible to adjust the reference point of the
REFCLKB+ input for alternate logic levels. When doing so, it
is necessary to ensure that the input differential crossing point
remains within the parametric range supported by the input.
Transmit BIST
The transmit channel contains an internal pattern generator
that can be used to validate both the link and device operation.
This generator is enabled by the TXBISTB latch via the device
configuration interface. When enabled, a register in the
transmit channel becomes a signature pattern generator by
logically converting to a Linear Feedback Shift Register
(LFSR). This LFSR generates a 511-character sequence. This
provides a predictable yet pseudo-random sequence that can
be matched to an identical LFSR in the attached Receiver(s).
Transmit Serial Output Drivers
The serial output interface drivers use differential Current
Mode Logic (CML) drivers to provide source-matched drivers
for 50Ω transmission lines. These drivers accept data from the
transmit shifter. These drivers have signal swings equivalent
to that of standard PECL drivers, and are capable of driving
AC-coupled optical modules or transmission lines.
Transmit Channels Enabled
A device reset (RESET sampled LOW) presets the BIST
Enable Latches to disable BIST on all channels.
Each driver can be enabled or disabled separately via the
device configuration interface.
All data present at the TXDB[9:0] inputs are ignored when
BIST is active on that channel.
When a driver is disabled via the configuration interface, it is
internally powered down to reduce device power. If both
transmit serial drivers are in this disabled state, the transmitter
internal logic for that channel is also powered down. A device
reset (RESET sampled LOW) disables all output drivers.
Transmit PLL Clock Multiplier
The Transmit PLL Clock Multiplier accepts a character-rate or
half-character-rate external clock at the REFCLKB± input, and
that clock is multiplied by 10 or 20 (as selected by TXRATEB)
to generate a bit-rate clock for use by the transmit shifter. It
also provides a character-rate clock used by the transmit
paths, and outputs this character rate clock as TXCLKOB.
Note. When the disabled transmit channel (i.e., both outputs
disabled) is re-enabled:
• the data on the transmit serial outputs may not meet all
timing specifications for up to 250 µs
• the state of the phase-align buffer cannot be guaranteed,
and a phase-align reset is required if the phase-align buffer
is used
The clock multiplier PLL can accept a REFCLKB± input
between 19.5 MHz and 150 MHz, however, this clock range is
limited by the operating mode of the CYV15G0104TRB clock
multiplier (TXRATEB) and by the level on the SPDSELB input.
CYV15G0104TRB Receive Data Path
[4]
SPDSELB is a 3-level select input that selects one of three
operating ranges for the serial data outputs of the transmit
channel. The operating serial signaling-rate and allowable
range of REFCLKB± frequencies are listed in Table 1.
Serial Line Receivers
Two differential Line Receivers, INA1± and INA2±, are
available on the receive channel for accepting serial data
streams. The active Serial Line Receiver is selected using the
Document #: 38-02100 Rev. *B
Page 10 of 27
CYV15G0104TRB
INSELA input. The Serial Line Receiver inputs are differential,
and can accommodate wire interconnect and filtering losses
or transmission line attenuation greater than 16 dB. For
normal operation, these inputs should receive a signal of at
Range Controls
The CDR circuit includes logic to monitor the frequency of the
PLL Voltage Controlled Oscillator (VCO) used to sample the
incoming data stream. This logic ensures that the VCO
operates at, or near the rate of the incoming data stream for
two primary cases:
least VI
> 100 mV, or 200 mV peak-to-peak differential.
DIFF
Each Line Receiver can be DC- or AC-coupled to +3.3V
powered fiber-optic interface modules (any ECL/PECL family,
not limited to 100K PECL) or AC-coupled to +5V powered
optical modules. The common-mode tolerance of these line
receivers accommodates a wide range of signal termination
voltages. Each receiver provides internal DC-restoration, to
the center of the receiver’s common mode range, for AC-
coupled signals.
• when the incoming data stream resumes after a time in
which it has been “missing.”
• when the incoming data stream is outside the acceptable
signaling rate range.
To perform this function, the frequency of the RXPLL VCO is
periodically compared to the frequency of the TRGCLKA±
input. If the VCO is running at a frequency beyond
[24]
Signal Detect/Link Fault
±1500ppm
as defined by the TRGCLKA± frequency, it is
periodically forced to the correct frequency (as defined by
TRGCLKA±, SPDSELA, and TRGRATEA) and then released
in an attempt to lock to the input data stream.
Each selected Line Receiver (i.e., that routed to the clock and
data recovery PLL) is simultaneously monitored for
• analog amplitude above amplitude level selected by
SDASELA
• transition density above the specified limit
The sampling and relock period of the Range Control is calcu-
lated as follows: RANGE_CONTROL_ SAMPLING_PERIOD
= (RECOVERED BYTE CLOCK PERIOD) * (4096).
• range controls report the received data stream inside
[24]
normal frequency range (±1500 ppm
• receive channel enabled
)
During the time that the Range Control forces the RXPLL VCO
to track TRGCLKA±, the LFIA output is asserted LOW. After a
valid serial data stream is applied, it may take up to one
RANGE CONTROL SAMPLING PERIOD before the PLL
locks to the input data stream, after which LFIA should be
HIGH.
• Presence of reference clock
• ULCA is not asserted.
All of these conditions must be valid for the Signal Detect block
to indicate a valid signal is present. This status is presented on
the LFIA (Link Fault Indicator) output associated with each
receive channel, which changes synchronous to the receive
interface clock.
The operating serial signaling-rate and allowable range of
TRGCLKA± frequencies are listed in Table 3.
Table 3. Operating Speed Settings
TRGCLKA±
Analog Amplitude
Frequency
(MHz)
Signaling
While most signal monitors are based on fixed constants, the
analog amplitude level detection is adjustable to allow
operation with highly attenuated signals, or in high-noise
environments. The analog amplitude level detection is set by
the SDASELA latch via device configuration interface. The
SDASELA latch sets the trip point for the detection of a valid
signal at one of three levels, as listed in Table 2. This control
input affects the analog monitors for all receive channels. The
Analog Signal Detect monitors are active for the Line Receiver
as selected by the INSELA input.
SPDSELA TRGRATEA
Rate (Mbps)
LOW
MID (Open)
HIGH
1
0
1
0
1
0
reserved
19.5–40
20–40
195–400
400–800
800–1500
40–80
40–75
80–150
[7]
Receive Channel Enabled
Table 2. Analog Amplitude Detect Valid Signal Levels
The receive channel can be enabled or disabled through the
RXPLLPDA input latch as controlled by the device configu-
ration interface. When RXPLLPDA = 0, the CDR PLL and
analog circuitry of the channel are disabled. Any disabled
channel indicates a constant link fault condition on the LFIA
output. When RXPLLPDA = 1, the CDR PLL and receive
channel are enabled to receive a serial stream.
Typical Signal with Peak Amplitudes
SDASELA
Above
00
01
10
11
Analog Signal Detector is disabled
140 mV p-p differential
280 mV p-p differential
420 mV p-p differential
Note. When the disabled receive channel is reenabled, the
status of the LFIA output and data on the parallel outputs for
the associated channel may be indeterminate for up to 2 ms.
Transition Density
The Transition Detection logic checks for the absence of
transitions spanning greater than six transmission characters
Clock/Data Recovery
(60 bits). If no transitions are present in the data received, the
Detection logic for that channel asserts LFIA.
The extraction of a bit-rate clock and recovery of bits from the
received serial stream is performed by a separate CDR block
within the receive channel. The clock extraction function is
Note:
7. The peak amplitudes listed in this table are for typical waveforms that have generally 3–4 transitions for every ten bits. In a worse case environment the signals
may have a sine-wave appearance (highest transition density with repeating 0101...). Signal peak amplitudes levels within this environment type could increase
the values in the table above by approximately 100 mV.
Document #: 38-02100 Rev. *B
Page 11 of 27
CYV15G0104TRB
performed by an integrated PLL that tracks the frequency of
the transitions in the incoming bit stream and aligns the phase
of the internal bit-rate clock to the transitions in the selected
serial data stream.
When a driver is disabled via the configuration interface, it is
internally powered down to reduce device power. If both
reclocker serial drivers are in this disabled state, the internal
reclocker logic is also powered down. The deserialization logic
and parallel outputs will remain enabled. A device reset
(RESET sampled LOW) disables all output drivers.
Each CDR accepts a character-rate (bit-rate ÷ 10) or half-
character-rate (bit-rate ÷ 20) training clock from the
TRGCLKA± input. This TRGCLKA± input is used to
Note. When the disabled reclocker function (i.e., both outputs
disabled) is re-enabled, the data on the reclocker serial
outputs may not meet all timing specifications for up to 250 µs.
• ensure that the VCO (within the CDR) is operating at the
correct frequency (rather than a harmonic of the bit-rate)
• reduce PLL acquisition time
Output Bus
• limit unlocked frequency excursions of the CDR VCO when
there is no input data present at the selected Serial Line
Receiver.
The receive channel presents a 10-bit data signal (and a BIST
status signal when RXBISTA[1:0] = 10).
Regardless of the type of signal present, the CDR attempts to
recover a data stream from it. If the signaling rate of the
recovered data stream is outside the limits set by the range
control monitors, the CDR tracks TRGCLKA± instead of the
data stream. Once the CDR output (RXCLKA±) frequency
returns back close to the TRGCLKA± frequency, the CDR
input is switched back to the input data stream. If no data is
present at the selected line receiver, this switching behavior
may result in brief RXCLKA± frequency excursions from
TRGCLKA±. However, the validity of the input data stream is
Receive BIST Operation
The receiver channel contains an internal pattern checker that
can be used to validate both device and link operation. These
pattern checkers are enabled by the RXBISTA[1:0] latch via
the device configuration interface. When enabled, a register in
the receive channel becomes a signature pattern generator
and checker by logically converting to a Linear Feedback Shift
Register (LFSR). This LFSR generates a 511-character
sequence. This provides a predictable yet pseudo-random
sequence that can be matched to an identical LFSR in the
attached Transmitter(s). When synchronized with the received
data stream, the Receiver checks each character from the
deserializer with each character generated by the LFSR and
indicates compare errors and BIST status at the RXDA[1:0]
and BISTSTA bits of the Output Register.
indicated by the LFIA output. The frequency of TRGCLKA± is
[24]
required to be within ±1500ppm
of the frequency of the
clock that drives the REFCLKB± input of the remote trans-
mitter to ensure a lock to the incoming data stream. This large
ppm tolerance allows the CDR PLL to reliably receive a 1.485
or 1.485/1.001 Gbps SMPTE HD-SDI data stream with a
constant TRGCLK frequency.
The BIST status bus {BISTSTA, RXDA[0], RXDA[1]} indicates
010b or 100b for one character period per BIST loop to
indicate loop completion. This status can be used to check test
pattern progress.
For systems using multiple or redundant connections, the
LFIA output can be used to select an alternate data stream.
When an LFIA indication is detected, external logic can toggle
selection of the INA1± and INA2± input through the INSELA
input. When a port switch takes place, it is necessary for the
receive PLL for that channel to reacquire the new serial
stream.
The specific status reported by the BIST state machine is listed
in Table 6. These same codes are reported on the receive
status outputs.
If the number of invalid characters received ever exceeds the
number of valid characters by 16, the receive BIST state
machine aborts the compare operations and resets the LFSR
to look for the start of the BIST sequence again.
Reclocker
The receive channel performs a reclocker function on the
incoming serial data. To do this, the Clock and Data Recovery
PLL first recovers the clock from the data. The data is retimed
by the recovered clock and then passed to an output register.
Also, the recovered character clock from the receive PLL is
passed to the reclocker output PLL which generates the bit
clock that is used to clock the retimed data into the output
register. This data stream is then transmitted through the
differential serial outputs.
A device reset (RESET sampled LOW) presets the BIST
Enable Latches to disable BIST on all channels.
BIST Status State Machine
When a receive path is enabled to look for and compare the
received data stream with the BIST pattern, the {BISTSTA,
RXDA[1:0]} bits identify the present state of the BIST compare
operation.
Reclocker Serial Output Drivers
The BIST state machine has multiple states, as shown in
Figure 2 and Table 6. When the receive PLL detects an out-of-
lock condition, the BIST state is forced to the Start-of-BIST
state, regardless of the present state of the BIST state
machine. If the number of detected errors ever exceeds the
number of valid matches by greater than 16, the state machine
is forced to the WAIT_FOR_BIST state where it monitors the
receive path for the first character of the next BIST sequence.
The serial output interface drivers use differential Current
Mode Logic (CML) drivers to provide source-matched drivers
for 50Ω transmission lines. These drivers accept data from the
reclocker output register in the reclocker channel. These
drivers have signal swings equivalent to that of standard PECL
drivers, and are capable of driving AC-coupled optical
modules or transmission lines.
Power Control
Reclocker Output Channels Enabled
Each driver can be enabled or disabled separately via the
device configuration interface.
The CYV15G0104TRB supports user control of the powered
up or down state of each transmit and receive channel. The
receive channels are controlled by the RXPLLPDA latch via
Document #: 38-02100 Rev. *B
Page 12 of 27
CYV15G0104TRB
the device configuration interface. When RXPLLPDA = 0, the
receive PLL and analog circuitry of the channel is disabled.
The transmit channel is controlled by the TOE1B and the
TOE2B latches via the device configuration interface. The
reclocker function is controlled by the ROE1A and the ROE2A
latches via the device configuration interface. When a driver is
disabled via the configuration interface, it is internally powered
down to reduce device power. If both serial drivers for a
channel are in this disabled state, the associated internal logic
for that channel is also powered down. When the reclocker
serial drivers are disabled, the reclocker function will be
disabled, but the deserialization logic and parallel outputs will
remain enabled.
initialization value of the latches upon the assertion of RESET.
Table 5 shows how the latches are mapped in the device.
Each row in the Table 5 maps to a 7-bit latch bank. There are
6 such write-only latch banks. When WREN = 0, the logic value
in the DATA[6:0] is latched to the latch bank specified by the
values in ADDR[2:0]. The second column of Table 5 specifies
the channels associated with the corresponding latch bank.
For example, the first three latch banks (0,1 and 2) consist of
configuration bits for the reclocker channel A.
Latch Types
There are two types of latch banks: static (S) and dynamic (D).
Each channel is configured by 2 static and 1 dynamic latch
banks. The S type contain those settings that normally do not
change for a given application, whereas the D type controls
the settings that could change during the application's lifetime.
The first and second rows of each channel (address numbers
0, 1, 5, and 6) are the static control latches. The third row of
latches for each channel (address numbers 2 and 7) are the
dynamic control latches that are associated with enabling
dynamic functions within the device. Address numbers 3 and
4 are internal test registers.
Device Reset State
When the CYV15G0104TRB is reset by assertion of RESET,
all state machines, counters, and configuration latches in the
device are initialized to a reset state. See Table 4 for the
initialize values of the configuration latches.
Following a device reset, it is necessary to enable the transmit
and receive channels used for normal operation. This can be
done by sequencing the appropriate values on the device
[5]
configuration interface.
Static Latch Values
There are some latches in the table that have a static value
(i.e. 1, 0, or X). The latches that have a ‘1’ or ‘0’ must be
configured with their corresponding value each time that their
associated latch bank is configured. The latches that have an
‘X’ are don’t cares and can be configured with any value.
Device Configuration and Control Interface
The CYV15G0104TRB is highly configurable via the configu-
ration interface. The configuration interface allows the trans-
mitter and reclocker to be configured independently. Table 4
lists the configuration latches within the device including the
Table 4. Device Configuration and Control Latch Descriptions
Name
Signal Description
RXRATEA
Receive Clock Rate Select. The initialization value of the RXRATEA latch = 1. RXRATEA is used to select
the rate of the RXCLKA± clock output.
When RXRATEA = 1, the RXCLKA± clock outputs are complementary clocks that follow the recovered clock
operating at half the character rate. Data for the associated receive channels should be latched alternately on
the rising edge of RXCLKA+ and RXCLKA–.
When RXRATEA = 0, the RXCLKA± clock outputs are complementary clocks that follow the recovered clock
operating at the character rate. Data for the associated receive channels should be latched on the rising edge
of RXCLKA+ or falling edge of RXCLKA–.
SDASEL1A[1:0] Primary Serial Data Input Signal Detector Amplitude Select. The initialization value of the SDASEL1A[1:0]
latch = 10. SDASEL1A[1:0] selects the trip point for the detection of a valid signal for the INA1± Primary
Differential Serial Data Inputs.
When SDASEL1A[1:0] = 00, the Analog Signal Detector is disabled.
When SDASEL1A[1:0] = 01, the typical p-p differential voltage threshold level is 140 mV.
When SDASEL1A[1:0] = 10, the typical p-p differential voltage threshold level is 280 mV.
When SDASEL1A[1:0] = 11, the typical p-p differential voltage threshold level is 420 mV.
SDASEL2A[1:0] Secondary Serial Data Input Signal Detector Amplitude Select. The initialization value of the
SDASEL2A[1:0] latch = 10. SDASEL2A[1:0] selects the trip point for the detection of a valid signal for the
INA2± Secondary Differential Serial Data Inputs.
When SDASEL2A[1:0] = 00, the Analog Signal Detector is disabled
When SDASEL2A[1:0] = 01, the typical p-p differential voltage threshold level is 140 mV.
When SDASEL2A[1:0] = 10, the typical p-p differential voltage threshold level is 280 mV.
When SDASEL2A[1:0] = 11, the typical p-p differential voltage threshold level is 420 mV.
TRGRATEA
Training Clock Rate Select. The initialization value of the TRGRATEA latch = 0. TRGRATEA is used to select
the clock multiplier for the training clock input to the CDR PLL. When TRGRATEA = 0, the TRGCLKA± input
is not multiplied before it is passed to the CDR PLL. When TRGRATEA = 1, the TRGCLKA± input is multiplied
by 2 before it is passed to the CDR PLL. TRGRATEA = 1 and SPDSELA = LOW is an invalid state and this
combination is reserved.
Document #: 38-02100 Rev. *B
Page 13 of 27
CYV15G0104TRB
Table 4. Device Configuration and Control Latch Descriptions (continued)
Name
Signal Description
RXPLLPDA
Receive Channel Enable. The initialization value of the RXPLLPDA latch = 0. RXPLLPDA selects if the
receive channel is enabled or powered-down. When RXPLLPDA = 0, the receive PLL and analog circuitry are
powered-down. When RXPLLPDA = 1, the receive PLL and analog circuitry are enabled.
RXBISTA[1:0]
ROE2A
Receive Bist Disable / SMPTE Receive Enable. The initialization value of the RXBISTA[1:0] latch = 11. For
SMPTE data reception, RXBISTA[1:0] should not remain in this initialization state (11). RXBISTA[1:0] selects
if receive BIST is disabled or enabled and sets the device for SMPTE data reception. When RXBISTA[1:0] =
01, the receiver BIST function is disabled and the device is set to receive SMPTE data. When RXBISTA[1:0]
= 10, the receive BIST function is enabled and the device is set to receive BIST data. RXBISTA[1:0] = 00 and
RXBISTA[1:0] = 11 are invalid states.
Reclocker Secondary Differential Serial Data Output Driver Enable. The initialization value of the ROE2A
latch = 0. ROE2A selects if the ROUTA2± secondary differential output drivers are enabled or disabled. When
ROE2A = 1, the associated serial data output driver is enabled allowing the reclocked data to be transmitted.
When ROE2A = 0, the associated serial data output driver is disabled. When a driver is disabled via the
configuration interface, it is internally powered down to reduce device power. If both serial drivers for a channel
are in this disabled state, the reclocker logic is also powered down. A device reset (RESET sampled LOW)
disables all output drivers.
ROE1A
Reclocker Primary Differential Serial Data Output Driver Enable. The initialization value of the ROE1A
latch = 0. ROE1A selects if the ROUTA1± primary differential output drivers are enabled or disabled. When
ROE1A = 1, the associated serial data output driver is enabled allowing the reclocked data to be transmitted.
When ROE1A = 0, the associated serial data output driver is disabled. When a driver is disabled via the
configuration interface, it is internally powered down to reduce device power. If both serial drivers for a channel
are in this disabled state, the reclocker logic is also powered down. A device reset (RESET sampled LOW)
disables all output drivers.
TXCKSELB
TXRATEB
Transmit Clock Select. The initialization value of the TXCKSELB latch = 1. TXCKSELB selects the clock
source used to write data into the Transmit Input Register. When TXCKSELB = 1, the input register TXDB[9:0]
is clocked by REFCLKB↑. In this mode, the phase alignment buffer in the transmit path is bypassed. When
TXCKSELB = 0, TXCLKB↑ is used to clock in the input register TXDB[9:0].
Transmit PLL Clock Rate Select. The initialization value of the TXRATEB latch = 0. TXRATEB is used to
select the clock multiplier for the Transmit PLL. When TXRATEB = 0, the transmit PLL multiples the REFCLKB±
input by 10 to generate the serial bit-rate clock. When TXRATEB = 0, the TXCLKOB output clocks are full-rate
clocks and follow the frequency and duty cycle of the REFCLKB± input. When TXRATEB = 1, the Transmit
PLL multiplies the REFCLKB± input by 20 to generate the serial bit-rate clock. When TXRATEB = 1, the
TXCLKOB output clocks are twice the frequency rate of the REFCLKB± input. When TXCKSELB = 1 and
TXRATEB = 1, the Transmit Data Inputs are captured using both the rising and falling edges of REFCLKB.
TXRATEB = 1 and SPDSELB = LOW, is an invalid state and this combination is reserved.
TXBISTB
TOE2B
Transmit Bist Disable. The initialization value of the TXBISTB latch = 1. TXBISTB selects if the transmit BIST
is disabled or enabled. When TXBISTB = 1, the transmit BIST function is disabled. When TXBISTB = 0, the
transmit BIST function is enabled.
Secondary Differential Serial Data Output Driver Enable. The initialization value of the TOE2B latch = 0.
TOE2B selects if the TOUTB2± secondary differential output drivers are enabled or disabled. When TOE2B
= 1, the associated serial data output driver is enabled allowing data to be transmitted from the transmit shifter.
When TOE2B = 0, the associated serial data output driver is disabled. When a driver is disabled via the
configuration interface, it is internally powered down to reduce device power. If both serial drivers for a channel
are in this disabled state, the associated internal logic for that channel is also powered down. A device reset
(RESET sampled LOW) disables all output drivers.
TOE1B
Primary Differential Serial Data Output Driver Enable. The initialization value of the TOE1B latch = 0.
TOE1B selects if the TOUTB1± primary differential output drivers are enabled or disabled. When TOE1B = 1,
the associated serial data output driver is enabled allowing data to be transmitted from the transmit shifter.
When TOE1B = 0, the associated serial data output driver is disabled. When a driver is disabled via the
configuration interface, it is internally powered down to reduce device power. If both serial drivers for a channel
are in this disabled state, the associated internal logic for that channel is also powered down. A device reset
(RESET sampled LOW) disables all output drivers.
PABRSTB
Transmit Clock Phase Alignment Buffer Reset. The initialization value of the PABRSTB latch = 1. The
PABRSTB is used to re-center the Transmit Phase Align Buffer. When the configuration latch PABRSTB is
written as a 0, the phase of the TXCLKB input clock relative to REFCLKB+/- is initialized. PABRSTB is an
asynchronous input, but is sampled by each TXCLKB↑ to synchronize it to the internal clock domain.
PABRSTB is a self clearing latch. This eliminates the requirement of writing a 1 to complete the initialization
of the Phase Alignment Buffer.
Document #: 38-02100 Rev. *B
Page 14 of 27
CYV15G0104TRB
Table 5. Device Control Latch Configuration Table
Reset
Value
ADDR Channel Type
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
0
A
A
A
S
S
D
1
0
X
X
0
0
RXRATEA
1011111
(000b)
1
SDASEL2A[1]
RXBISTA[1]
SDASEL2A[0]
RXPLLPDA
SDASEL1A[1]
RXBISTA[0]
SDASEL1A[0]
X
X
X
TRGRATEA
X
1010110
1011001
(001b)
2
ROE2A
ROE1A
(010b)
3
INTERNAL TEST REGISTERS
(011b)
DO NOT WRITE TO THESE ADDRESSES
4
(100b)
5
B
B
B
S
S
D
X
X
X
X
X
0
X
X
X
X
X
X
0
0
X
1011111
1010110
1011001
(101b)
6
TXCKSELB
TOE1B
TXRATEB
PABRSTB
(110b)
7
TXBISTB
TOE2B
(111b)
Device Configuration Strategy
JTAG Support
The following is a series of ordered events needed to load the
configuration latches on a per channel basis:
The CYV15G0104TRB contains a JTAG port to allow system
level diagnosis of device interconnect. Of the available JTAG
modes, boundary scan, and bypass are supported. This
capability is present only on the LVTTL inputs and outputs, the
TRGCLKA± input, and the REFCLKB± clock input. The high-
speed serial inputs and outputs are not part of the JTAG test
chain.
1. Pulse RESET Low after device power-up. This operation
resets both channels.
2. Set the static latch banks for the target channel.
3. Set the dynamic bank of latches for the target channel.
Enable the Receive PLL and/or transmit channel. If the
receiver is enabled, set the device for SMPTE data
reception (RXBISTA[1:0] = 01) or BIST data reception
(RXBISTA[1:0] = 10).
3-Level Select Inputs
Each 3-Level select inputs reports as two bits in the scan
register. These bits report the LOW, MID, and HIGH state of
the associated input as 00, 10, and 11 respectively
4. Reset the Phase Alignment Buffer. [Optional if phase align
buffer is bypassed.]
JTAG ID
The JTAG device ID for the CYV15G0104TRB is ‘0C811069’x.
Table 6. Receive BIST Status Bits
{BISTSTA, RXDA[0], RXDA[1]}
Description
Receive BIST Status
(Receive BIST = Enabled)
000, 001
010
BIST Data Compare. Character compared correctly.
BIST Last Good. Last Character of BIST sequence detected and valid.
011
Reserved.
100
BIST Last Bad. Last Character of BIST sequence detected invalid.
101
BIST Start. Receive BIST is enabled on this channel, but character compares have not yet
commenced. This also indicates a PLL Out of Lock condition.
110
111
BIST Error. While comparing characters, a mismatch was found in one or more of the
character bits.
BIST Wait. The receiver is comparing characters but has not yet found the start of BIST
character to enable the LFSR.
Document #: 38-02100 Rev. *B
Page 15 of 27
CYV15G0104TRB
Monitor Data
Received
Receive BIST
Detected LOW
{BISTSTA, RXDA[0],
RXDA[1]} =
BIST_START (101)
RX PLL
Out of Lock
{BISTSTA, RXDA[0], RXDA[1]} =
BIST_WAIT (111)
Start of
BIST Detected
No
Yes, {BISTSTA, RXDA[0], RXDA[1]} =
BIST_DATA_COMPARE (000, 001)
Compare
Next Character
Mismatch
{BISTSTA, RXDA[0], RXDA[1]} =
BIST_DATA_COMPARE (000, 001)
Match
Auto-Abort
Condition
Yes
No
End-of-BIST
State
End-of-BIST
State
No
Yes, {BISTSTA, RXDA[0], RXDA[1]} =
BIST_LAST_BAD (100)
Yes, {BISTSTA, RXDA[0], RXDA[1]} =
BIST_LAST_GOOD (010)
No, {BISTSTA, RXDA[0], RXDA[1]} =
BIST_ERROR (110)
Figure 2. Receive BIST State Machine
Document #: 38-02100 Rev. *B
Page 16 of 27
CYV15G0104TRB
Static Discharge Voltage..........................................> 2000 V
(per MIL-STD-883, Method 3015)
Maximum Ratings
(Above which the useful life may be impaired. User guidelines
only, not tested.)
Latch-up Current.....................................................> 200 mA
Power-up Requirements
Storage Temperature ..................................–65°C to +150°C
The CYV15G0104TRB requires one power supply. The
Voltage on any input or I/O pin cannot exceed the power pin
during power-up.
Ambient Temperature with
Power Applied.............................................–55°C to +125°C
Supply Voltage to Ground Potential............... –0.5V to +3.8V
DC Voltage Applied to LVTTL Outputs
in High-Z State .......................................–0.5V to V + 0.5V
Operating Range
CC
Range
Ambient Temperature
V
CC
Output Current into LVTTL Outputs (LOW)..................60 mA
Commercial
0°C to +70°C
+3.3V ±5%
DC Input Voltage....................................–0.5V to V + 0.5V
CC
CYV15G0104TRB DC Electrical Characteristics
Parameter
Description
Test Conditions
Min.
Max.
Unit
LVTTL-compatible Outputs
V
Output HIGH Voltage
Output LOW Voltage
I
I
= − 4 mA, V = Min.
2.4
V
V
OHT
OLT
OH
OL
CC
V
= 4 mA, V = Min.
0.4
–100
20
CC
[8]
I
I
Output Short Circuit Current
V
V
= 0V , V = 3.3V
–20
–20
mA
µA
OST
OZL
OUT
OUT
CC
CC
High-Z Output Leakage Current
= 0V, V
LVTTL-compatible Inputs
V
V
Input HIGH Voltage
Input LOW Voltage
Input HIGH Current
2.0
V
+ 0.3
V
IHT
ILT
CC
–0.5
0.8
1.5
V
I
REFCLKB Input, V = V
CC
mA
µA
mA
µA
µA
µA
IHT
IN
Other Inputs, V = V
+40
–1.5
–40
IN
CC
I
Input LOW Current
REFCLKB Input, V = 0.0V
IN
ILT
Other Inputs, V = 0.0V
IN
I
I
Input HIGH Current with internal pull-down
Input LOW Current with internal pull-up
V
V
= V
CC
+200
–200
IHPDT
ILPUT
IN
IN
= 0.0V
LVDIFF Inputs: REFCLKB±
[9]
V
V
V
V
Input Differential Voltage
Highest Input HIGH Voltage
Lowest Input LOW voltage
Common Mode Range
400
1.2
0.0
1.0
V
V
mV
V
DIFF
CC
IHHP
CC
V
/2
V
ILLP
CC
[10]
V
– 1.2V
V
COMREF
CC
3-Level Inputs
V
Three-Level Input HIGH Voltage
Min. ≤ V ≤ Max.
0.87 * V
0.47 * V
0.0
V
CC
V
V
IHH
IMM
ILL
CC
CC
V
V
Three-Level Input MID Voltage
Three-Level Input LOW Voltage
Input HIGH Current
Min. ≤ V ≤ Max.
0.53 * V
0.13 * V
200
CC
CC
CC
Min. ≤ V ≤ Max.
V
CC
CC
I
I
I
V
V
V
= V
CC
µA
µA
µA
IHH
IN
IN
IN
Input MID current
= V /2
–50
50
IMM
ILL
CC
Input LOW current
= GND
–200
Differential CML Serial Outputs: OUTA1±, OUTA2±, OUTB1±, OUTB2±, OUTC1±, OUTC2±, OUTD1±, OUTD2±
V
Output HIGH Voltage
(V Referenced)
100Ω differential load
150Ω differential load
V
V
– 0.5
– 0.5
V
V
– 0.2
– 0.2
V
V
OHC
CC
CC
CC
CC
CC
Notes:
8. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle.
9. This is the minimum difference in voltage between the true and complement inputs required to ensure detection of a logic-1 or logic-0. A logic-1 exists when
the true (+) input is more positive than the complement (−) input. A logic-0 exists when the complement (−) input is more positive than true (+) input.
10. The common mode range defines the allowable range of REFCLKB+ and REFCLKB− when REFCLKB+ = REFCLKB−. This marks the zero-crossing between
the true and complement inputs as the signal switches between a logic-1 and a logic-0.
Document #: 38-02100 Rev. *B
Page 17 of 27
CYV15G0104TRB
CYV15G0104TRB DC Electrical Characteristics (continued)
Parameter
Description
Output LOW Voltage
Test Conditions
100Ω differential load
150Ω differential load
100Ω differential load
150Ω differential load
Min.
Max.
Unit
V
V
V
V
– 1.4
V
V
– 0.7
OLC
CC
CC
CC
CC
(V Referenced)
CC
– 1.4
– 0.7
V
V
Output Differential Voltage
|(OUT+) − (OUT−)|
450
900
mV
mV
ODIF
560
100
1000
Differential Serial Line Receiver Inputs: INA1±, INA2±
[9]
V
Input Differential Voltage |(IN+) − (IN−)|
Highest Input HIGH Voltage
Lowest Input LOW Voltage
Input HIGH Current
1200
mV
V
DIFFs
V
V
I
V
CC
IHE
V
– 2.0
V
ILE
CC
V
V
= V Max.
IHE
1350
+3.1
µA
µA
V
IHE
IN
I
Input LOW Current
= V Min.
–700
ILE
IN
ILE
[11]
VI
Common Mode input range
((V – 2.0V)+0.5)min,
+1.25
COM
CC
(V – 0.5V) max.
CC
Power Supply
Typ.
Max.
[12, 13]
I
I
Max Power Supply Current
REFCLKB Commercial
= MAX
585
690
mA
mA
CC
[12, 13]
Typical Power Supply Current
REFCLKB Commercial
= 125 MHz
560
660
CC
AC Test Loads and Waveforms
3.3V
RL = 100Ω
R
L
R1
R1 = 590Ω
R2 = 435Ω
CL ≤ 7 pF
(Includes fixture and
probe capacitance)
(Includes fixture and
probe capacitance)
CL
R2
[14]
(b) CML Output Test Load
[14]
(a) LVTTL Output Test Load
VIHE
3.0V
VIHE
2.0V
0.8V
2.0V
0.8V
80%
80%
Vth = 1.4V
Vth = 1.4V
20%
20%
VILE
≤ 270 ps
GND
VILE
≤ 270 ps
≤ 1 ns
≤ 1 ns
[15]
(d) CML/LVPECL Input Test Waveform
(c) LVTTL Input Test Waveform
CYV15G0104TRB AC Electrical Characteristics
Parameter
Description
Min.
Max
Unit
CYV15G0104TRB Transmitter LVTTL Switching Characteristics Over the Operating Range
f
t
t
t
TXCLKB Clock Cycle Frequency
TXCLKB Period=1/f
19.5
6.66
2.2
150
MHz
ns
TS
51.28
TXCLK
TXCLKH
TS
[16]
[16]
TXCLKB HIGH Time
TXCLKB LOW Time
ns
2.2
ns
TXCLKL
Notes:
11. The common mode range defines the allowable range of INPUT+ and INPUT− when INPUT+ = INPUT−. This marks the zero-crossing between the true and
complement inputs as the signal switches between a logic-1 and a logic-0.
12. Maximum I is measured with V = MAX,T = 25°C, with all channels and Serial Line Drivers enabled, sending a continuous alternating 01 pattern, and
CC
CC
A
outputs unloaded.
13. Typical I is measured under similar conditions except with V = 3.3V, T = 25°C,with all channels enabled and one Serial Line Driver per channel sending
CC
CC
A
a continuous alternating 01 pattern. The redundant outputs on each channel are powered down and the parallel outputs are unloaded.
14. Cypress uses constant current (ATE) load configurations and forcing functions. This figure is for reference only.
15. The LVTTL switching threshold is 1.4V. All timing references are made relative to where the signal edges cross the threshold voltage.
16. Tested initially and after any design or process changes that may affect these parameters, but not 100% tested.
Document #: 38-02100 Rev. *B
Page 18 of 27
CYV15G0104TRB
CYV15G0104TRB AC Electrical Characteristics (continued)
Parameter
Description
Min.
0.2
Max
1.7
Unit
ns
[16, 17, 18, 19]
t
t
t
t
f
t
t
TXCLKB Rise Time
TXCLKB Fall Time
TXCLKR
TXCLKF
TXDS
[16, 17, 18, 19]
0.2
1.7
ns
Transmit Data Set-up Time to TXCLKB↑ (TXCKSELB = 0)
Transmit Data Hold Time from TXCLKB↑ (TXCKSELB = 0)
TXCLKOB Clock Frequency = 1x or 2x REFCLKB Frequency
2.2
ns
1.0
ns
TXDH
19.5
6.66
–1.9
150
51.28
0
MHz
ns
TOS
TXCLKOB Period=1/f
TXCLKO
TOS
TXCLKOB Duty Cycle centered at 60% HIGH time
ns
TXCLKOD
CYV15G0104TRB Receiver LVTTL Switching Characteristics Over the Operating Range
f
t
t
t
t
t
RXCLKA± Clock Output Frequency
RXCLKA± Period = 1/f
9.75
6.66
150
102.56
+1.0
1.2
MHz
ns
RS
RXCLKP
RXCLKD
RXCLKR
RS
RXCLKA± Duty Cycle Centered at 50% (Full Rate and Half Rate)
RXCLKA± Rise Time
–1.0
ns
[16]
[16]
0.3
ns
RXCLKA± Fall Time
0.3
1.2
ns
RXCLKF
[20]
[21]
[21]
[21]
[21]
Status and Data Valid Time to RXCLKA± (RXRATEA = 0) (Full Rate)
Status and Data Valid Time to RXCLKA± (RXRATEA = 1) (Half Rate)
Status and Data Valid Time to RXCLKA± (RXRATEA = 0)
Status and Data Valid Time to RXCLKA± (RXRATEA = 1)
RECLKOA Clock Frequency
5UI–2.0
5UI–1.3
5UI–1.8
5UI–2.6
19.5
ns
RXDv–
RXDv+
ROS
ns
[20]
t
ns
ns
f
t
t
150
51.28
0
MHz
ns
RECLKOA Period=1/f
6.66
RECLKO
ROS
RECLKOA Duty Cycle centered at 60% HIGH time
-1.9
ns
RECLKOD
CYV15G0104TRB REFCLKB Switching Characteristics Over the Operating Range
f
t
t
REFCLKB Clock Frequency
REFCLKB Period = 1/f
19.5
6.6
150
MHz
ns
ns
ns
ns
ns
%
REF
51.28
REFCLK
REFH
REF
REFCLKB HIGH Time (TXRATEB = 1)(Half Rate)
REFCLKB HIGH Time (TXRATEB = 0)(Full Rate)
REFCLKB LOW Time (TXRATEB = 1)(Half Rate)
REFCLKB LOW Time (TXRATEB = 0)(Full Rate)
REFCLKB Duty Cycle
5.9
[16]
2.9
t
5.9
REFL
[16]
2.9
[22]
t
t
t
t
30
70
2
REFD
[16, 17, 18, 19]
REFCLKB Rise Time (20%–80%)
ns
ns
ns
REFR
REFF
[16, 17, 18, 19]
REFCLKB Fall Time (20%–80%)
2
Transmit Data Set-up Time to REFCLKB - Full Rate
(TXRATEB = 0, TXCKSELB = 1)
2.4
2.3
1.0
1.6
TREFDS
TREFDH
Transmit Data Set-up Time to REFCLKB - Half Rate
(TXRATEB = 1, TXCKSELB = 1)
ns
ns
ns
t
Transmit Data Hold Time from REFCLKB - Full Rate
(TXRATEB= 0, TXCKSELB = 1)
Transmit Data Hold Time from REFCLKB - Half Rate
(TXRATEB = 1, TXCKSELB = 1)
CYV15G0104TRB TRGCLKA Switching Characteristics Over the Operating Range
f
t
TRGCLKA Clock Frequency
TRGCLKA Period = 1/f
19.5
6.6
150
MHz
ns
TRG
51.28
REFCLK
TRG
Notes:
17. The ratio of rise time to falling time must not vary by greater than 2:1.
18. For a given operating frequency, neither rise or fall specification can be greater than 20% of the clock-cycle period or the data sheet maximum time.
19. All transmit AC timing parameters measured with 1ns typical rise time and fall time.
20. Parallel data output specifications are only valid if all outputs are loaded with similar DC and AC loads.
21. Receiver UI (Unit Interval) is calculated as 1/(f
* 20) (when TRGRATEA = 1) or 1/(f
* 10) (when TRGRATEA = 0). In an operating link this is equivalent to t .
TRG
TRG
B
22. The duty cycle specification is a simultaneous condition with the t
and t
parameters. This means that at faster character rates the REFCLKB± duty
REFH
REFL
cycle cannot be as large as 30%–70%.
Document #: 38-02100 Rev. *B
Page 19 of 27
CYV15G0104TRB
CYV15G0104TRB AC Electrical Characteristics (continued)
Parameter
Description
TRGCLKA HIGH Time (TRGRATEA = 1)(Half Rate)
TRGCLKA HIGH Time (TRGRATEA = 0)(Full Rate)
TRGCLKA LOW Time (TRGRATEA = 1)(Half Rate)
TRGCLKA LOW Time (TRGRATEA = 0)(Full Rate)
TRGCLKA Duty Cycle
Min.
Max
Unit
ns
ns
ns
ns
%
t
t
5.9
TRGH
[16]
2.9
5.9
TRGL
[16]
2.9
30
[23]
t
t
t
t
70
2
TRGD
TRGR
TRGF
[16, 17, 18]
[16, 17, 18]
[24]
TRGCLKA Rise Time (20%–80%)
ns
ns
%
TRGCLKA Fall Time (20%–80%)
2
TRGCLKA Frequency Referenced to Received Clock Frequency
–0.15
+0.15
TRGRX
CYV15G0104TRB Bus Configuration Write Timing Characteristics Over the Operating Range
t
t
t
Bus Configuration Data Hold
0
ns
ns
ns
DATAH
DATAS
WRENP
Bus Configuration Data Setup
Bus Configuration WREN Pulse Width
10
10
CYV15G0104TRB JTAG Test Clock Characteristics Over the Operating Range
f
t
JTAG Test Clock Frequency
JTAG Test Clock Period
20
MHz
ns
TCLK
TCLK
50
30
CYV15G0104TRB Device RESET Characteristics Over the Operating Range
Device RESET Pulse Width
t
ns
RST
CYV15G0104TRB Transmitter and Reclocker Serial Output Characteristics Over the Operating Range
Parameter
Description
Condition
Min.
660
50
Max.
5128
270
Unit
ps
t
t
Bit Time
B
[16]
CML Output Rise Time 20−80% (CML Test Load)
SPDSELx = HIGH
SPDSELx= MID
SPDSELx =LOW
SPDSELx = HIGH
SPDSELx = MID
SPDSELx =LOW
ps
RISE
100
180
50
500
ps
1000
270
ps
[16]
t
CML Output Fall Time 80−20% (CML Test Load)
ps
FALL
100
180
500
ps
1000
ps
PLL Characteristics
Parameter
Description
Condition
Min. Typ.
Max. Unit
CYV15G0104TRB Transmitter Output PLL Characteristics
[16, 25]
t
t
t
Transmit Jitter Generation - SD Data Rate
Transmit Jitter Generation - HD Data Rate
Transmit PLL lock to REFCLKB±
REFCLKB = 27 MHz
200
76
ps
ps
JTGENSD
JTGENHD
TXLOCK
[16, 25]
REFCLKB = 148.5 MHz
200
µs
CYV15G0104TRB Reclocker Output PLL Characteristics
[16, 26]
t
t
Reclocker Jitter Generation - SD Data Rate
Reclocker Jitter Generation - HD Data Rate
TRGCLKA = 27 MHz
133
107
ps
ps
JRGENSD
[16, 26]
TRGCLKA = 148.5 MHz
JRGENHD
Notes:
23. The duty cycle specification is a simultaneous condition with the t
and t
parameters. This means that at faster character rates the TRGCLKA± duty
TRGL
TRGH
cycle cannot be as large as 30%–70%.
24. TRGCLKA± has no phase or frequency relationship with the recovered clock(s) and only acts as a centering reference to reduce clock synchronization time.
TRGCLKA± must be within ±1500 PPM (±0.15%) of the transmitter PLL reference (REFCLK±) frequency. Although transmitting to a HOTLink II receiver channel
necessitates the frequency difference between the transmitter and receiver reference clocks to be within ±1500-PPM, the stability of the crystal needs to be
within the limits specified by the appropriate standard when transmitting to a remote receiver that is compliant to that standard.
25. While sending BIST data at the corresponding data rate, after 10,000 histogram hits, time referenced to REFCLKB± input.
26. Receiver input stream is BIST data from the transmit channel. This data is reclocked and output to a wide-bandwidth digital sampling oscilloscope. The
measurement was recorded after 10,000 histogram hits, time referenced to REFCLKB± of the transmit channel.
Document #: 38-02100 Rev. *B
Page 20 of 27
CYV15G0104TRB
PLL Characteristics
Parameter
Description
Condition
Min. Typ.
Max. Unit
CYV15G0104TRB Receive PLL Characteristics Over the Operating Range
t
Receive PLL lock to input data stream (cold start)
Receive PLL lock to input data stream
Receive PLL Unlock Rate
376k
376k
46
UI
UI
UI
RXLOCK
t
RXUNLOCK
Capacitance [16]
Parameter
Description
Test Conditions
T = 25°C, f = 1 MHz, V = 3.3V
Max.
Unit
C
C
TTL Input Capacitance
PECL input Capacitance
7
4
pF
pF
INTTL
A
0
CC
T = 25°C, f = 1 MHz, V = 3.3V
INPECL
A
0
CC
CYV15G0104TRB HOTLink II Transmitter Switching Waveforms
t
TXCLK
Transmit Interface
Write Timing
TXCLKB selected
t
t
TXCLKL
TXCLKH
TXCLKB
t
t
TXDH
TXDS
TXDB[9:0]
Transmit Interface
Write Timing
REFCLKB selected
TXRATEB = 0
t
REFCLK
t
t
REFL
REFH
REFCLKB
t
t
TREFDS
TREFDH
TXDB[9:0]
Transmit Interface
Write Timing
REFCLKB selected
TXRATEB = 1
t
REFCLK
t
t
REFL
REFH
REFCLKB
Note 27
t
t
t
TREFDS
t
TREFDH
TREFDS
TREFDH
TXDB[9:0]
Note:
27. When REFCLKB± is configured for half-rate operation (TXRATEB = 1) and data is captured using REFCLKB instead of a TXCLKB clock. Data is captured using
both the rising and falling edges of REFCLKB.
Document #: 38-02100 Rev. *B
Page 21 of 27
CYV15G0104TRB
CYV15G0104TRB HOTLink II Transmitter Switching Waveforms (continued)
Transmit Interface
TXCLKOB Timing
tREFCLK
tREFH
tREFL
TXRATE = 1
REFCLKB
Note 28
tTXCLKO
Note 29
TXCLKOB
(internal)
Transmit Interface
TXCLKOB Timing
t
REFCLK
t
t
REFH
REFL
TXRATEB = 0
Note28
REFCLKB
t
TXCLKO
Note29
TXCLKOB
Switching Waveforms for the CYV15G0104TRB HOTLink II Receiver
Receive Interface
Read Timing
RXRATEA = 0
t
RXCLKP
RXCLKA+
RXCLKA–
t
RXDV
–
RXDA[9:0]
t
RXDV+
Notes:
28. The TXCLKOB output remains at the character rate regardless of the state of TXRATEB and does not follow the duty cycle of REFCLKB±.
29. The rising edge of TXCLKOB output has no direct phase relationship to the REFCLKB± input.
Document #: 38-02100 Rev. *B
Page 22 of 27
CYV15G0104TRB
Switching Waveforms for the CYV15G0104TRB HOTLink II Receiver
Receive Interface
Read Timing
RXRATEA = 1
t
RXCLKP
RXCLKA+
RXCLKA–
t
RXDV
–
RXDA[9:0]
t
RXDV+
Bus Configuration
Write Timing
ADDR[2:0]
DATA[6:0]
WREN
t
WRENP
t
DATAS
t
DATAH
Document #: 38-02100 Rev. *B
Page 23 of 27
CYV15G0104TRB
Table 7. Package Coordinate Signal Allocation
Ball
ID
Ball
ID
Ball
ID
Signal Name
NC
Signal Type
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
POWER
Signal Name
NC
Signal Type
NO CONNECT
GROUND
Signal Name
VCC
NC
Signal Type
POWER
A01
A02
A03
A04
A05
A06
A07
A08
A09
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
B01
B02
B03
B04
B05
B06
B07
B08
B09
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
C01
C02
C03
C07
C08
C09
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
D01
D02
D03
D04
D05
D06
D07
D08
D09
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
E01
E02
E03
E04
E17
E18
E19
E20
F01
F17
F18
F19
F20
G01
G02
G03
G04
G17
G18
G19
G20
H01
H02
H03
H04
H17
H18
H19
H20
J01
J02
J03
J04
J17
J18
J19
J20
K01
K02
K03
K04
K17
K18
K19
K20
L01
L02
L03
L04
L17
L18
L19
NC
GND
NO CONNECT
NO CONNECT
NO CONNECT
GROUND
NC
DATA[6]
DATA[4]
DATA[2]
DATA[0]
GND
LVTTL IN PU
LVTTL IN PU
LVTTL IN PU
LVTTL IN PU
GROUND
NC
NC
NC
VCC
GND
WREN
GND
GND
NC
NC
NO CONNECT
CML OUT
LVTTL IN PU
GROUND
TOUTB1–
GND
GROUND
NC
NO CONNECT
3-LEVEL SEL
POWER
GROUND
GND
GROUND
SPDSELB
VCC
NO CONNECT
NO CONNECT
3-LEVEL SEL
NO CONNECT
GROUND
TOUTB2–
INA1–
ROUTA1–
GND
CML OUT
NC
CML IN
LDTDEN
TRST
GND
LVTTL IN PU
LVTTL IN PU
GROUND
SPDSELA
NC
CML OUT
GROUND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
NC
INA2–
ROUTA2–
VCC
CML IN
TDO
LVTTL 3-S OUT
LVTTL IN PD
LVTTL IN PU
POWER
GROUND
CML OUT
TCLK
RESET
VCC
GROUND
POWER
GROUND
VCC
POWER
GROUND
NC
NO CONNECT
POWER
INSELA
VCC
LVTTL IN
GROUND
VCC
POWER
GROUND
NC
NO CONNECT
POWER
ULCA
NC
LVTTL IN PU
NO CONNECT
GROUND
GROUND
VCC
GROUND
NC
NO CONNECT
POWER
GND
GROUND
VCC
DATA[5]
DATA[3]
DATA[1]
GND
LVTTL IN PU
LVTTL IN PU
LVTTL IN PU
GROUND
GROUND
NC
NO CONNECT
POWER
GROUND
VCC
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
GROUND
VCC
POWER
NC
TOUTB1+
GND
CML OUT
GND
GROUND
NC
GROUND
GND
GROUND
NC
NC
NO CONNECT
CML OUT
NC
NO CONNECT
POWER
NC
TOUTB2+
INA1+
ROUTA1+
GND
VCC
NC
CML IN
NC
NO CONNECT
POWER
GND
GND
NC
CML OUT
VCC
GROUND
GROUND
SCANEN2
TMEN3
VCC
LVTTL IN PD
LVTTL IN PD
POWER
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
GROUND
INA2+
ROUTA2+
VCC
CML IN
NC
CML OUT
NC
POWER
VCC
POWER
NC
NC
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
LVTTL IN PU
LVTTL IN PU
POWER
VCC
POWER
NC
NC
VCC
POWER
NC
NC
VCC
POWER
NC
NC
VCC
POWER
GND
NC
TDI
VCC
POWER
NO CONNECT
NO CONNECT
NO CONNECT
TMS
VCC
POWER
NC
VCC
NC
NO CONNECT
NC
Document #: 38-02100 Rev. *B
Page 24 of 27
CYV15G0104TRB
Table 7. Package Coordinate Signal Allocation (continued)
Ball
ID
Ball
ID
Ball
ID
Signal Name
VCC
VCC
NC
Signal Type
POWER
Signal Name
NC
Signal Type
NO CONNECT
POWER
Signal Name
GND
Signal Type
GROUND
C04
C05
C06
M03
M04
M17
M18
M19
M20
N01
N02
N03
N04
N17
N18
N19
N20
P01
P02
P03
P04
P17
P18
P19
P20
R01
R02
R03
R04
R17
R18
R19
R20
T01
T02
T03
T04
T17
T18
T19
T20
U01
U02
F02
F03
F04
U03
U04
U05
U06
U07
U08
U09
U10
U11
U12
U13
U14
U15
U16
U17
U18
U19
U20
V01
V02
V03
V04
V05
V06
V07
V08
V09
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
W01
W02
L20
M01
M02
W03
W04
W05
W06
W07
W08
W09
W10
W11
W12
W13
W14
W15
W16
W17
POWER
VCC
NC
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
POWER
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
GROUND
NC
NO CONNECT
LVTTL IN
NC
NC
TXDB[2]
TXDB[9]
VCC
NC
NC
LVTTL IN
NC
NC
POWER
VCC
NC
NC
NO CONNECT
NO CONNECT
GROUND
NC
NO CONNECT
NO CONNECT
GROUND
NC
NC
NC
GND
GND
GND
GND
GND
GND
GND
GND
GND
NC
GND
GND
GROUND
GND
GROUND
ADDR [2]
ADDR [1]
RXCLKA+
REPDOA
GND
LVTTL IN PU
LVTTL IN PU
LVTTL OUT
LVTTL OUT
GROUND
GROUND
ADDR [0]
REFCLKB–
GND
LVTTL IN PU
PECL IN
GROUND
GROUND
GROUND
GROUND
GND
GROUND
GROUND
GND
GROUND
GND
GROUND
GROUND
VCC
POWER
VCC
POWER
GROUND
VCC
POWER
VCC
POWER
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
GROUND
RXDA[4]
VCC
LVTTL OUT
POWER
LFIA
LVTTL OUT
PECL IN
NC
W18 TRGCLKA+
NC
BISTSTA
RXDA[0]
TXDB[3]
TXDB[4]
TXDB[8]
NC
LVTTL OUT
LVTTL OUT
LVTTL IN
W19
W20
Y01
Y02
Y03
Y04
Y05
Y06
Y07
Y08
Y09
Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
RXDA[6]
RXDA[3]
TXDB[6]
TXCLKB
NC
LVTTL OUT
LVTTL OUT
LVTTL IN
NC
GND
GND
GND
GND
NC
GROUND
LVTTL IN
LVTTL IN PD
NO CONNECT
NO CONNECT
POWER
GROUND
LVTTL IN
GROUND
NO CONNECT
POWER
NC
NO CONNECT
NO CONNECT
NO CONNECT
NO CONNECT
POWER
VCC
VCC
NC
NC
NO CONNECT
NO CONNECT
GROUND
NC
NO CONNECT
NO CONNECT
GROUND
NC
NC
NC
NC
GND
GND
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
TXDB[0]
TXDB[1]
NC
NO CONNECT
GROUND
TXCLKOB
NC
LVTTL OUT
NO CONNECT
GROUND
POWER
GND
POWER
REFCLKB+
RECLKOA
GND
PECL IN
GND
POWER
LVTTL OUT
GROUND
RXCLKA–
GND
LVTTL OUT
GROUND
POWER
POWER
GND
GROUND
GND
GROUND
POWER
VCC
POWER
VCC
POWER
POWER
VCC
POWER
VCC
POWER
POWER
RXDA[9]
RXDA[5]
RXDA[2]
RXDA[1]
TXDB[5]
TXDB[7]
LVTTL OUT
LVTTL OUT
LVTTL OUT
LVTTL OUT
LVTTL IN
TXERRB
LVTTL OUT
PECL IN
POWER
Y18 TRGCLKA–
POWER
Y19
Y20
RXDA[8]
RXDA[7]
LVTTL OUT
LVTTL OUT
POWER
LVTTL IN
LVTTL IN
LVTTL IN
Document #: 38-02100 Rev. *B
Page 25 of 27
CYV15G0104TRB
Ordering Information
Package
Name
Operating
Range
Speed
Standard
Standard
Ordering Code
Package Type
CYV15G0104TRB-BGC
CYV15G0104TRB-BGXC
BL256
BL256
256-Ball Thermally Enhanced Ball Grid Array
Commercial
Commercial
Pb-Free 256-Ball Thermally Enhanced Ball Grid Array
Package Diagram
256-Lead L2 Ball Grid Array (27 x 27 x 1.57 mm) BL256
51-85123-*E
HOTLink is a registered trademark and HOTLink II is a trademark of Cypress Semiconductor. All product and company names
mentioned in this document may be the trademarks of their respective holders.
Document #: 38-02100 Rev. *B
Page 26 of 27
CYV15G0104TRB
Document History Page
Document Title: CYV15G0104TRB Independent Clock HOTLink II™ Serializer and Reclocking Deserializer
Document Number: 38-02100
ISSUE
DATE
ORIG. OF
CHANGE
REV.
**
ECN NO.
244348
338721
384307
DESCRIPTION OF CHANGE
See ECN
See ECN
See ECN
FRE
SUA
AGT
New Data Sheet
Added Pb-Free package option availability
Revised setup and hold times (t , t
*A
*B
, t
,t
, t
)
TXDH TREFDS TREFDH RXDv– RXDv+
Document #: 38-02100 Rev. *B
Page 27 of 27
|